

High Level Disinfection (HLD) Failure in Gastrointestinal Scopes with Elevator Channels – Is it Time to Switch to Ethylene Oxide (ETO) Sterilization?

Sheila McCool, MPH, BSN, CIC; Carlene A. Muto, MD, MS; Ashley Querry, BS, CIC; Kevin McGrath, MD; Adam Slivka, MD, PhD; Jill Zonker, RN, BSN, MsEd; A. William Pasculle, ScD

University of Pittsburgh Medical Center

Setting

Background

CARBAPENEM-RESISTANT ENTEROBACTERIACEAE

9,000 DRUG-RESISTANT S 600 DEAT

CARBAPENEMRESISTANT
KLEBSIELLA SPP. 7,900 E 1,400 RESISTANT
KLEBSIELLA SPP. 7,900 E. COLL

The University of Pittsburgh Medical Center (UPMC) Presbyterian is a 766bed tertiary care facility affiliated with the University of Pittsburgh Schools of the Health Sciences

Background

- Enterobacteriaceae are a family of bacteria that commonly cause infections in the community as well as in health-care settings
- Carbapenem-resistant Enterobacteriaceae (CRE) appear to have been uncommon in the United States before 1992
- Klebsiella pneumonia (KP) carbapenemase (C) is the most common carbapenemase
- Over the past decade, CRE have been recognized in healthcare settings as a cause of serious infections with high mortality
- Up to 50% in some studies
- CRE often carry genes that confer high levels of resistance to many other antimicrobials
- "Pan-resistant"
- Difficult-to-treat infections
- Flexible endoscopy procedures /ERCP's are a routine part of patient diagnosis and treatment in healthcare
- Flexible scopes contain a number of internal systems that perform functions specific to the model
- ERCP scopes are equipped with a forcep raiser (elevator) at the distal end to deflect accessories passed through the biopsy channel. The elevator housing on the scope tip is recessed and collects bio burden during use
- Accessories may be passed through the endoscope into the ducts to remove stones, insert stents, or take tissue samples

REPROCESSING

 The elevator channel components are the most challenging to reprocess

Elevator riser Wire channel assembly **Control Knob** Cleaning tube mount

- Post-ERCP bloodstream infections (BSI's) and biliary tree infections are reported after 1-3% of procedures
- Outbreaks have been associated with insufficient cleaning/ disinfection of channels, rinsing with tap water or by using defective scope washing machines
- Current CDC guidelines consider GI scopes as semi critical items and recommend proper cleaning (C) and FDA approved high level disinfection (HLD)
- In 2012 an increase in CRKP infections was noted
- Many infections were in patients post ERCP

An investigation ensued to include:

- All ERCP scopes were taken out of service
- Notification to the scope manufacturer (Olympus)
- **Evaluation of C/HLD process**
- GI lab/scopes were inspected
 - Boroscopy internal lumen without defect
- Scope culturing
 - 5/31 (16%) scopes grew organisms consistent with GI flora
 - 1/5 (20%) grew both Carbapenem sensitive (CS) KP and CRKP
- ECRI/Olympus performed observations
- Molecular typing of CRKP isolates from post ERCP patients
- The scope manufacturer, Olympus, suggested that the HLD failure was attributable to use of a competing manufacturers' scope washer
- Custom Ultrasonic (CU)/ortho-phthalaldehyde
- Olympus suggested use of their product
- **OER/ Peracetic acid**
- Ultimately the CUAER was replaced with the Olympus AER
- All ERCP/EUS scopes underwent HLD followed by Ethylene oxide gas sterilization (ETO)

Objective

• The objective of this study was to determine if the use of the Olympus endoscopic reprocessor (OER)/peracetic acid would eliminate scope bacterial contamination

- Scope reprocessing with 2 OER scope washers, provided by the scope
- A maximum of 30 scopes were to undergo culture post- use and HLD but prior to ETO
- The study would terminate if a positive culture was identified
- This would demonstrate failure of the recommended OER scope washer
- Targeted scopes included patients who had undergone an ERCP and had a history of KP colonization/infection

- Sterile gloves were donned for scope sampling
- Biopsy Channel/Elevator Sampling
 - Sterile Trypticase soy broth (TSB) was injected into the biopsy channel in the ante retrograde direction
 - The fluid was collected into a sterile specimen cup which was held at the distal end of the scope
 - During this manipulation, the elevator was moved up and down
 - The broth was aspirated back up the biopsy channel into a Luken's trap with vacuum

Water Reservoir Sampling

- Sterile TSB was placed into the water reservoir
- Sterile TSB was injected into the water channel
- The broth was collected in a sterile specimen cup held at the distal end of the scope.
- Samples were incubated at 37° C
- Samples with growth were inoculated onto appropriate agar media
- Isolated organisms were identified and had antimicrobial susceptibility performed using the Siemens Micro scan Walkaway instrument
- KPC production was verified using a BLAkpc PCR

Results

- Over a period of 2 months, 6 scopes were cultured
- Bacteria were recovered from 5/6 (83.3%) scopes post OER
- The 6th scope was from a patient post-ERCP with known h/o ESBL KP
- Last ESBL KP culture 12/25/13
- ERCP 1/7/2014
- Post-HLD- culture grew Klebsiella pneumoniae (ESBL), E.coli and E. Faecium (VRE).

Date	Scope Number	Biopsy Port/Elevator	Water Channel	Patient Culture		
				Date	Specimen	Result
11/18/13	1	Viridans strep	Micrococcus	07/06/13	Blood	CR KP
11/25/13	2	Coag Neg Staph	Viridans strep & Coag Neg Staph	09/01/13	Wound	CR KP
11/25/13	3	Viridans strep & Coag Neg Staph	Viridans strep	10/04/11	BAL	KP
11/27/13	4	Micrococcus	No Growth	09/08/08	Urine	KP
11/27/13	5	Viridans strep & Micrococcus	Viridans strep	06/30/13	Urine	KP
01/07/14		KP(ESBL)				
	6	E. coli	No Growth	12/25/13	Urine	KP (ESBL)
		E. Faecium (VRE)				

Conclusions

- HLD was not effective in eradicating bacteria from Olympus ERCP and EUS scope biopsy channels with elevators using either CU (OPA) or OER (peracetic acid) scope washers
- All scopes with elevators (ERCP/EUS) have been reprocessed using ETO gas sterilization at **UPMC-PUH since 10/2013**
- Changing ERCP/EUS scope reprocessing was associated with significant changes
 - New ETO sterilizers were purchased to meet demand
 - ETO turnaround time is ~18 hours
 - Scope volume was doubled
- **UPMC Health System**
 - It was time to change to ETO gas sterilization for scopes with elevators
 - All scopes with elevators (ERCP/EUS) are now reprocessed using ETO
 - Routine scope culturing should occur at a regular frequency to ensure proper reprocessing.
- No additional healthcare-associated infections have been noted since ERCP/EUS scope reprocessing included ETO

Guideline for Disinfection and Sterilization n Healthcare Facilities, 2008

